
COP 4600: Intro To OS (Memory Management – Part 2) Page 1 © Dr. Mark Llewellyn

COP 4600 – Summer 2013

Introduction To Operating Systems

Memory Management – Part 2

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

 markl@cs.ucf.edu

 HEC 236, 407-823-2790

 http://www.cs.ucf.edu/courses/cop4600/sum2013

COP 4600: Intro To OS (Memory Management – Part 2) Page 2 © Dr. Mark Llewellyn

Memory Management

Memory Management Methods

Contiguous Allocation Non-Contiguous Allocation

Single Partition Multiple Partition

Fixed

Allocation

Dynamic

Allocation

Segmentation Paging

"Basic"

Paging
Demand

Paging

(Virtual Memory)

COP 4600: Intro To OS (Memory Management – Part 2) Page 3 © Dr. Mark Llewellyn

Paging
• Both unequal fixed-size and variable-size partitions are inefficient in

the use of memory.

– Unequal fixed-size partitions result in internal fragmentation.

– Variable size partitions result in external fragmentation.

• Paging is a technique which attempts to resolve both types of

fragmentation.

• In paging, the main memory is partitioned into fixed-size chunks that

are relatively small, and each process is also divided into small fixed-

size chunks of the same size.

• The chunks of a process are referred to as pages, while the chunks of

main memory are referred to as frames (or page frames).

• Paging results in a small amount of internal fragmentation in only the

last frame assigned to a process and no external fragmentation.

COP 4600: Intro To OS (Memory Management – Part 2) Page 4 © Dr. Mark Llewellyn

Assignment of Process Pages to Free Frames

COP 4600: Intro To OS (Memory Management – Part 2) Page 5 © Dr. Mark Llewellyn

Assignment of Process Pages to Free Frames

COP 4600: Intro To OS (Memory Management – Part 2) Page 6 © Dr. Mark Llewellyn

Paging (cont.)

• Notice that process pages do not need to be loaded into contiguous
page frames. (Recall our discussions of logical addressing.)

• With paging, a simple relocation register is no longer sufficient for
calculating physical addresses at execution time.

• The OS maintains a page table for each process.

• The page table shows the frame location for each page of the process.
Within the program, each logical address consists of a page number
and an offset within the page.

– Recall that with simple partitioning, a logical address is the location of
the word relative to the beginning of the program which the processor
translated into a physical address.

• With paging, the logical-to-physical address translation is still done
by processor hardware, but now the processor must know how to
access the page table of the current process.

COP 4600: Intro To OS (Memory Management – Part 2) Page 7 © Dr. Mark Llewellyn

Paging (cont.)

• When presented with a logical address (page number,

offset), the processor uses the page table to produce a

physical address (page frame, offset).

• The next page, illustrates the page tables for the processes

in the previous example at the time illustrated by figure

(f), which is shown again for continuity.

COP 4600: Intro To OS (Memory Management – Part 2) Page 8 © Dr. Mark Llewellyn

Page Tables for Example on Page 4

Process B currently has

no pages loaded in main

memory

COP 4600: Intro To OS (Memory Management – Part 2) Page 9 © Dr. Mark Llewellyn

Paging (cont.)

• Simple paging is similar to fixed partitioning. The
differences are that, with paging, the partitions are rather
small; a program may occupy more than one partition
(frame); and these partitions need not be contiguous.

• To make simple paging convenient for use, the page size,
and hence the frame size as well, is set to be a power of 2.

• When the page size is a power of 2, it is easy to
demonstrate that the relative address, which is defined
with reference to the origin of the program, and the logical
address, expressed as a page number and offset, are the
same!

• The example on the next page illustrates this point.

COP 4600: Intro To OS (Memory Management – Part 2) Page 10 © Dr. Mark Llewellyn

Paging – Address Translation Scheme

• Address generated by CPU is divided into:

– Page number (p) – used as an index into a page table which

contains base address of each page in physical memory.

– Page offset (d) – combined with base address to define the

physical memory address that is sent to the memory unit

– For given logical address space 2m and page size 2n

page number page offset

p d

m - n n

COP 4600: Intro To OS (Memory Management – Part 2) Page 11 © Dr. Mark Llewellyn

Paging Hardware

COP 4600: Intro To OS (Memory Management – Part 2) Page 12 © Dr. Mark Llewellyn

Paging Model of Logical and Physical Memory

COP 4600: Intro To OS (Memory Management – Part 2) Page 13 © Dr. Mark Llewellyn

Simple Paging Example

32-byte memory

 and 4-byte pages

0

1

2

3

4

5

6

7

Frame Numbers

COP 4600: Intro To OS (Memory Management – Part 2) Page 14 © Dr. Mark Llewellyn

Free Frames

Before allocation After allocation

COP 4600: Intro To OS (Memory Management – Part 2) Page 15 © Dr. Mark Llewellyn

Implementation of Page Table

• Page table is kept in main memory.

• Page-table base register (PTBR) points to the page table.

• Page-table length register (PRLR) indicates size of the page table.

• In this scheme every data/instruction access requires two memory

accesses. One for the page table and one for the data/instruction.

• The two memory access problem can be solved by the use of a

special fast-lookup hardware cache called associative memory or

translation look-aside buffers (TLBs).

• Some TLBs store address-space identifiers (ASIDs) in each TLB

entry – uniquely identifies each process to provide address-space

protection for that process.

COP 4600: Intro To OS (Memory Management – Part 2) Page 16 © Dr. Mark Llewellyn

Associative Memory

• Associative memory – parallel search

 Address translation (p, d)

– If p is in associative register, get frame # out

– Otherwise get frame # from page table in memory

Page # Frame #

COP 4600: Intro To OS (Memory Management – Part 2) Page 17 © Dr. Mark Llewellyn

Paging Hardware With TLB

COP 4600: Intro To OS (Memory Management – Part 2) Page 18 © Dr. Mark Llewellyn

Effective Access Time

• Associative Lookup =  time unit.

• Assume memory cycle time is 1 microsecond.

• Hit ratio – percentage of times that a page number is found in the

associative registers; ratio related to number of associative

registers.

• Hit ratio = 

• Effective Access Time (EAT)

 EAT = (1 + )  + (2 + )(1 – )

 = 2 +  – 

COP 4600: Intro To OS (Memory Management – Part 2) Page 19 © Dr. Mark Llewellyn

Memory Protection

• Memory protection implemented by associating a protection bit

with each frame.

• Valid-invalid bit attached to each entry in the page table:

– “valid” indicates that the associated page is in the process’

logical address space, and is thus a legal page

– “invalid” indicates that the page is not in the process’ logical

address space

COP 4600: Intro To OS (Memory Management – Part 2) Page 20 © Dr. Mark Llewellyn

Valid (v) or Invalid (i) Bit In A Page Table

COP 4600: Intro To OS (Memory Management – Part 2) Page 21 © Dr. Mark Llewellyn

Paging Example

• Suppose 16-bit addresses are used in our machine and that

the page size is set at 1K = 1024 bytes = 210.

• The logical address:

 (1502)10 = (5DE)16 = (0000010111011110)2

• A page size of 1K, requires an offset field of 10 bits. This

leaves 6 bits to represent the page number.

• This implies that a program can consist of a maximum of

26 = 64 pages, each of 1K bytes.

 (0000010111011110)2 = page 1, offset (011101111)2 =

 (1DE)16 = (478)10 page offset

COP 4600: Intro To OS (Memory Management – Part 2) Page 22 © Dr. Mark Llewellyn

Paging Example (cont.)

COP 4600: Intro To OS (Memory Management – Part 2) Page 23 © Dr. Mark Llewellyn

Paging Example (cont.)

COP 4600: Intro To OS (Memory Management – Part 2) Page 24 © Dr. Mark Llewellyn

Paging (cont.)

• The consequences of using a page size that is a power of 2

are twofold.

1. The logical addressing scheme is transparent to the programmer,

the assembler, and the linker. Each logical address (page number,

offset) of a program is identical to its relative address.

2. It is a relatively easy matter to implement a function in hardware

to perform dynamic address translation at run time.

• Consider an address of n + m bits, where the leftmost n

bits are the page number and the right most m bits are the

offset. (In our previous example, n = 6, and m = 10.)

COP 4600: Intro To OS (Memory Management – Part 2) Page 25 © Dr. Mark Llewellyn

Paging (cont.)

• The following steps are needed to perform address translation:

1. Extract the page number as the leftmost n bits of the logical address.

2. Use the page number as an index into the process page table to find the

frame number, k.

3. The starting physical address of the frame is k*2m, and the physical

address of the referenced byte is that number plus the offset. This

physical address does not need to be calculated; it is easily constructed

by appending the frame number to the offset.

• Using the previous example, where the logical address

(0000010111011110)2 yields page number 1, offset 478. Assuming

this page is residing in page frame (6)10 = (000110)2, then the

physical address is frame number 6, offset 478 =

(0001100111011110)2.

COP 4600: Intro To OS (Memory Management – Part 2) Page 26 © Dr. Mark Llewellyn

Paging Summary

• With simple paging, main memory is divided into many
small equal-size frames. In this respect, paging is similar
to fixed-size partitioning.

• Each process is divided into frame-size pages; smaller
processes require fewer pages, larger processes require
more pages.

• When a process is brought in, all of its pages are loaded
into available frames, and a page table is set up for the
process.

• Paging results in only a small amount of internal
fragmentation. No external fragmentation occurs.

COP 4600: Intro To OS (Memory Management – Part 2) Page 27 © Dr. Mark Llewellyn

Segmentation

• A user program can be subdivided using segmentation, in which the

program and its associated data are divided into a number of

segments.

• It is not required that all segments of a program be of the same

length, although there is a maximum segment length.

• As with paging, a logical address using segmentation consists of two

parts, in this case a segment number and an offset.

• Because of the unequal-size segments, segmentation is similar to

dynamic partitioning.

• In the absence of an overlay scheme or the use of virtual memory, it

would be required that all of a program’s segments be loaded into

memory for execution.

COP 4600: Intro To OS (Memory Management – Part 2) Page 28 © Dr. Mark Llewellyn

User’s View of a Program

COP 4600: Intro To OS (Memory Management – Part 2) Page 29 © Dr. Mark Llewellyn

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

COP 4600: Intro To OS (Memory Management – Part 2) Page 30 © Dr. Mark Llewellyn

Segmentation Architecture

• Logical address consists of a two tuple:

 <segment-number, offset>,

• Segment table – maps two-dimensional physical addresses; each

table entry has:

– base – contains the starting physical address where the

segments reside in memory

– limit – specifies the length of the segment

• Segment-table base register (STBR) points to the segment

table’s location in memory

• Segment-table length register (STLR) indicates number of

segments used by a program;

 segment number s is legal if s < STLR

COP 4600: Intro To OS (Memory Management – Part 2) Page 31 © Dr. Mark Llewellyn

Segmentation Architecture (cont.)

• Protection

– With each entry in segment table associate:

• validation bit = 0  illegal segment

• read/write/execute privileges

• Protection bits associated with segments; code sharing occurs at

segment level.

• Since segments vary in length, memory allocation is a dynamic

storage-allocation problem.

• A segmentation example is shown in the following diagram.

COP 4600: Intro To OS (Memory Management – Part 2) Page 32 © Dr. Mark Llewellyn

Segmentation Hardware

COP 4600: Intro To OS (Memory Management – Part 2) Page 33 © Dr. Mark Llewellyn

Example of Segmentation

COP 4600: Intro To OS (Memory Management – Part 2) Page 34 © Dr. Mark Llewellyn

Segmentation (cont.)

• The difference, compared to dynamic partitioning, is that with
segmentation a program may occupy more than one partition, and
these partitions need not be contiguous.

• Segmentation eliminates internal fragmentation, but like dynamic
partitioning, it suffers from external fragmentation. However, since a
process is broken up into a number of smaller pieces, the external
fragmentation should be less.

• Whereas paging is invisible to the programmer, segmentation is
usually visible and is provided as a convenience for organizing
programs and data into different segments.

• For purposes of modular programming, the program or data may be
further broken down into multiple segments. The principal
inconvenience of this service is that the programmer must be aware
of the maximum segment size limitation.

COP 4600: Intro To OS (Memory Management – Part 2) Page 35 © Dr. Mark Llewellyn

Segmentation (cont.)

• Another consequence of unequal-size segments is that

there is no simple relationship between logical addresses

and physical addresses.

• Analogous to paging, a simple segmentation scheme

would make use of a segment table for each process and a

list of free blocks of main memory.

• Each segment table entry would have to list the starting

address in main memory of the corresponding segment.

The entry would also need to provide the length of the

segment, to assure than invalid addresses are not used.

COP 4600: Intro To OS (Memory Management – Part 2) Page 36 © Dr. Mark Llewellyn

Segmentation (cont.)

• When a process enters the running state, the address of its

segment table is loaded into a special register used by the

memory-management hardware.

• Assume an address of n+m bits where the leftmost n bits

are the segment number and the rightmost m bits are the

offset.

– In the example on page 38, n = 4 and m = 12. Thus, the

maximum segment size would be 212 = 4096 bytes.

COP 4600: Intro To OS (Memory Management – Part 2) Page 37 © Dr. Mark Llewellyn

Segmentation (cont.)

• Address translation using segmentation proceeds as

follows:

1. Extract the segment number as the leftmost n bits of the logical

address.

2. Use the segment number as an index into the process segment

table to find the starting physical address of the segment.

3. Compare the offset, expressed in the rightmost m bits, to the

length of the segment. If the offset is greater than or equal to the

length, the address is invalid.

4. The desired physical address is the sum of the starting physical

address of the segment plus the offset.

COP 4600: Intro To OS (Memory Management – Part 2) Page 38 © Dr. Mark Llewellyn

Segmentation Example

• Suppose 16-bit addresses are used in our machine and that

n = 4 and m = 12, thus the maximum segment size is 212 =

4096 bytes.

• The program is placed into two segments, where segment

#0 = 750 bytes and segment #1 = 1950 bytes.

• The logical address (0001001011110000)2 yields a

segment number of 1 and an offset of (001011110000)2 =

(2F0)16 = (752)10

 (0001001011110000)2 = segment 1, offset

 = (001011110000)2

 = (2F0)16 = (752)10

page offset

COP 4600: Intro To OS (Memory Management – Part 2) Page 39 © Dr. Mark Llewellyn

Segmentation Example (cont.)

(b)

COP 4600: Intro To OS (Memory Management – Part 2) Page 40 © Dr. Mark Llewellyn

Segmentation Example (cont.)

(00101110111)2 =

(2EE)16 = (750)10

(011110011110)2 =

(79E)16 = (1950)10

Starting address of

the segment

COP 4600: Intro To OS (Memory Management – Part 2) Page 41 © Dr. Mark Llewellyn

Segmentation Summary

• With simple segmentation, a process is divided into a

number of segments that need not be of equal size.

• When a process is brought in, all of its segments are

loaded into available regions of memory, and a segment

table is set up for the process.

• Segmentation results in no internal fragmentation.

External fragmentation occurs, however, its effects should

be less severe than occurs with dynamic partitioning as the

segment size is typically smaller.

